LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Cholesterol Analog Induces an Oligomeric Reorganization of VDAC.

Photo by anniespratt from unsplash

The oligomeric organization of the voltage-dependent anion-selective channel (VDAC) and its interactions with hexokinase play integral roles in mitochondrially mediated apoptotic signaling. Various small to large assemblies of VDAC are… Click to show full abstract

The oligomeric organization of the voltage-dependent anion-selective channel (VDAC) and its interactions with hexokinase play integral roles in mitochondrially mediated apoptotic signaling. Various small to large assemblies of VDAC are observed in mitochondrial outer membranes, but they do not predominate in detergent-solubilized VDAC samples. In this study, a cholesterol analog, cholesteryl-hemisuccinate (CHS), was shown to induce the formation of detergent-soluble VDAC multimers. The various oligomeric states of VDAC induced by the addition of CHS were deciphered through an integrated biophysics approach using microscale thermophoresis, analytical ultracentrifugation, and size-exclusion chromatography small angle x-ray scattering. Furthermore, CHS stabilizes the interaction between VDAC and hexokinase (Kd of 27 ± 6 μM), confirming the biological relevance of oligomers generated. Thus, sterols such as cholesterol in higher eukaryotes or ergosterol in fungi may regulate the VDAC oligomeric state and may provide a potential target for the modulation of apoptotic signaling by effecting VDAC-VDAC and VDAC-hexokinase interactions. In addition, the integrated biophysical approach described provides a powerful platform for the study of membrane protein complexes in solution.

Keywords: cholesterol analog; analog induces; vdac; induces oligomeric

Journal Title: Biophysical journal
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.