The go-or-grow hypothesis states that adherent cells undergo reversible phenotype switching between migratory and proliferative states, with cells in the migratory state being more motile than cells in the proliferative… Click to show full abstract
The go-or-grow hypothesis states that adherent cells undergo reversible phenotype switching between migratory and proliferative states, with cells in the migratory state being more motile than cells in the proliferative state. Here, we examine go-or-grow in two-dimensional in vitro assays using melanoma cells with fluorescent cell-cycle indicators and cell-cycle-inhibiting drugs. We analyze the experimental data using single-cell tracking to calculate mean diffusivities and compare motility between cells in different cell-cycle phases and in cell-cycle arrest. Unequivocally, our analysis does not support the go-or-grow hypothesis. We present clear evidence that cell motility is independent of the cell-cycle phase and that nonproliferative arrested cells have the same motility as cycling cells.
               
Click one of the above tabs to view related content.