LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modeling the Control of Meiotic Cell Divisions: Entry, Progression, and Exit.

Photo from wikipedia

Upon nitrogen starvation, Schizosaccharomyces pombe exit the mitotic cell cycle and become irreversibly committed to the completion of meiosis program. Meiotic cell divisions are coordinated with sporulation events to produce… Click to show full abstract

Upon nitrogen starvation, Schizosaccharomyces pombe exit the mitotic cell cycle and become irreversibly committed to the completion of meiosis program. Meiotic cell divisions are coordinated with sporulation events to produce haploid spores. In the last few decades, experiments on fission yeast have revealed different molecular players involved in two meiotic cell divisions, meiosis I (MI) and meiosis II (MII). How the MI entry, MI-to-MII transition, and MII exit occur because of the dynamics of the regulatory network is not well understood. In this work, we developed a comprehensive mathematical model of the network that describes the temporal dynamics of meiotic progression. The model accounts for the phenotypes of several experimental data (single and multiple mutations). We demonstrate the control strategy involving multiple feedback loops to yield two successive division cycles. The differential regulation of anaphase-promoting complex/cyclosome (APC/C) coactivators and its inhibitors is crucial for the dynamics of both MI-to-MII transition and MII exit. This model generates mechanistic insights that help in further experiments and modeling.

Keywords: meiotic cell; mii; progression; cell divisions; exit; cell

Journal Title: Biophysical journal
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.