LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

αI-spectrin represents evolutionary optimization of spectrin for red blood cell deformability.

Photo from wikipedia

Spectrin tetramers of the membranes of enucleated mammalian erythrocytes play a critical role in red blood cell survival in circulation. One of the spectrins, αI, emerged in mammals with enucleated… Click to show full abstract

Spectrin tetramers of the membranes of enucleated mammalian erythrocytes play a critical role in red blood cell survival in circulation. One of the spectrins, αI, emerged in mammals with enucleated red cells following duplication of the ancestral α-spectrin gene common to all animals. The neofunctionalized αI-spectrin has moderate affinity for βI-spectrin, while αII-spectrin, expressed in non-erythroid cells, retains ancestral characteristics and has a 10-fold higher affinity for βI-spectrin. It has been hypothesized that this adaptation allows for rapid make-and-break of tetramers to accommodate membrane deformation. We have tested this hypothesis by generating mice with high-affinity spectrin tetramers formed by exchanging the site of tetramer formation in αI-spectrin (segments R0 and R1) for that of αII-spectrin. Erythrocytes with αIIβI presented normal hematologic parameters yet showed increased thermostability and their membranes were significantly less deformable: under low shear forces they displayed tumbling behavior, rather than tank-treading. The membrane skeleton is more stable with αIIβI and shows significantly less remodeling under deformation than red cell membranes of wild-type mice. These data demonstrate that spectrin tetramers undergo remodeling in intact erythrocytes and that this is required for the normal deformability of the erythrocyte membrane. We conclude that αI-spectrin represents evolutionary optimization of tetramer formation: neither higher affinity tetramers (as shown here) nor lower affinity (as seen in hemolytic disease), can support the membrane properties required for effective tissue oxygenation in circulation.

Keywords: red blood; affinity; spectrin represents; blood cell; spectrin; cell

Journal Title: Biophysical journal
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.