Connexin-50 (Cx50) is among the most frequently mutated genes associated with congenital cataracts. While most of these disease-linked variants cause loss-of-function due to misfolding or aberrant trafficking, others directly alter… Click to show full abstract
Connexin-50 (Cx50) is among the most frequently mutated genes associated with congenital cataracts. While most of these disease-linked variants cause loss-of-function due to misfolding or aberrant trafficking, others directly alter channel properties. The mechanistic bases for such functional defects are mostly unknown. We investigated the functional and structural properties of a cataract-linked mutant, Cx50T39R (T39R), in the Xenopus oocyte system. T39R exhibited greatly enhanced hemichannel currents with altered voltage-gating properties compared to Cx50 and induced cell death. Co-expression of mutant T39R with wild-type Cx50 (to mimic the heterozygous state) resulted in hemichannel currents whose properties were indistinguishable from those induced by T39R alone, suggesting that the mutant had a dominant effect. Furthermore, when T39R was co-expressed with Cx46, it produced hemichannels with increased activity, particularly at negative potentials, which could potentially contribute to its pathogenicity in the lens. In contrast, co-expression of wild-type Cx50 with Cx46 was associated with a marked reduction in hemichannel activity indicating that it may have a protective effect. All-atom molecular dynamics simulations indicate that the R39 substitution can form multiple electrostatic salt-bridge interactions between neighboring subunits that could stabilize the open-state conformation of the N-terminal domain, while also neutralizing the voltage-sensing residue D3 as well as residue E42 which participates in loop-gating. Together, these results suggest T39R acts as a dominant gain-of-function mutation that produces leaky hemichannels that may cause cytotoxicity in the lens and lead to development of cataracts.
               
Click one of the above tabs to view related content.