LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A revised dosimetric characterization of 60Co BEBIG source: From single-source data to clinical dose distribution.

Photo by julienlphoto from unsplash

PURPOSE Although the dosimetric characterization of 60Co BEBIG source can be found in several literature studies, the data sets show major discrepancies and the lack of uncertainty analyses. This study… Click to show full abstract

PURPOSE Although the dosimetric characterization of 60Co BEBIG source can be found in several literature studies, the data sets show major discrepancies and the lack of uncertainty analyses. This study tried to determine an accurate dosimetric data set for this source using Monte Carlo (MC) simulations along with detailed uncertainty analysis. To explore how different dosimetric data sets can make changes in practical situations, clinical dose distributions based on our results were compared with the dose distributions derived from Granero et al. and consensus data sets. METHODS AND MATERIALS The MC simulations were performed with Monte Carlo N-Particle eXtended code (MCNPX) version 2.6.0 and the TG-43 parameters were estimated adhering to the American Association of Physicists in Medicine (AAPM) and European SocieTy for Radiotherapy and Oncology (ESTRO) 229 report. The dose rate distributions for single-source and two typical clinical cases, including one intracavitary and one interstitial, were calculated using an in-house code on the basis of the TG-43 formalism. RESULTS The total uncertainties for water dose rate on source transverse axis at 1 cm and 5 cm, air kerma strength, and dose rate constant were evaluated to be 0.10%, 0.09%, 0.04%, and 0.11%, respectively. Meaningful differences were found for the interstitial case in which 22% of clinical target volume (CTV) showed differences from ±1% to ±10% or even larger. CONCLUSIONS The MC uncertainty was derived about 16 times smaller than the typical MC component stated in TG-138, partly because of large number of histories and partly because the spectra of 60Co and also its photons' attenuation coefficients are adequately accurate. The results showed that in the clinical situations, the applicator geometry and the superposition of single-source dose distributions can reduce the differences observed between several data sets.

Keywords: single source; source; 60co bebig; dosimetric characterization; bebig source; characterization 60co

Journal Title: Brachytherapy
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.