BACKGROUND Brain microvascular endothelial cell (BMEC) is an important therapeutic target for the inhibition of brain vascular dysfunction in ischemic stroke. Expression of long non-coding RNA SNHG1 is reportedly upregulated… Click to show full abstract
BACKGROUND Brain microvascular endothelial cell (BMEC) is an important therapeutic target for the inhibition of brain vascular dysfunction in ischemic stroke. Expression of long non-coding RNA SNHG1 is reportedly upregulated in BMEC after OGD. The present study aims to investigate the potential roles of SNHG1 in OGD-induced injury in BMEC. METHODS Mice primary brain microvascular endothelial cells (BMEC) were cultured under "normal" or "oxygen/glucose-deprived" (OGD) conditions. The expression of SNHG1 and miR-338 after OGD were examined by qPCR. shRNA against SNHG1 was used to knockdown SNHG1 in BMEC. MiR-338-3p mimic and inhibitor were used to change the expression of miR-338 in BMEC. The relationship between SNHG1 and miR-338, and the relationship between miR-338 and HIF-1α were clarified using RNA pull-down and luciferase reporter gene assays, respectively. RESULTS SNHG1 and miR-338 were upregulated in OGD induced BMEC. SNHG1 silence aggravated OGD-induced cell apoptosis by down-regulating Bcl-2, HIF-1α and VEGF-A, and upregulating caspase 3 activity and Bax. MiR-338 was upregulated in SNHG1-silenced BMEC. RNA pull-down assays showed that SNHG1 could be directly bound by miR-338. In addition, miR-338 overexpression reduced cell viability in OGD while miR-338 inhibition protected BMEC against OGD-induced injury. Furthermore, luciferase reporter assay showed that HIF-1α was a direct target of miR-338. CONCLUSIONS SNHG1 exerted protective effects against OGD induced injury via sponging miR-338, thus upregulating HIF-1α/VEGF-A in BMEC.
               
Click one of the above tabs to view related content.