LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Anti-inflammatory effects of usnic acid in an MPTP-induced mouse model of Parkinson’s disease

Photo from wikipedia

Neuroinflammation is often associated with astrocyte and microglial activations particularly in Parkinson's disease (PD) and other brain damage such as Alzheimer's disease. Therefore, the modulation of glial activation offers a… Click to show full abstract

Neuroinflammation is often associated with astrocyte and microglial activations particularly in Parkinson's disease (PD) and other brain damage such as Alzheimer's disease. Therefore, the modulation of glial activation offers a possible target for treating PD-associated pathologies. Here, we evaluated the neuroprotective effects of usnic acid, a naturally occurring dibenzofuran derivative found in several lichen species in an acute mouse model of PD. Male mice were administered with vehicle or usnic acid (5 or 25 mg/kg) for 10 consecutive days, and then on day 11, MPTP (20 mg/kg, i.p.) was administered four times (with 2 hr intervals between injections) to induce PD pathologies. It was found that MPTP-induced motor dysfunction and neuronal loss were ameliorated in the usnic acid-treated mice versus vehicle-treated controls. Further study revealed that usnic acid effectively inhibited MPP+-induced glial activation in primary astrocytes by blocking NF-κB activation. Taken together, these findings suggest that usnic acid could be considered potentially useful therapeutic candidates for PD and other neurodegenerative diseases associated with neuroinflammation.

Keywords: usnic acid; effects usnic; parkinson disease; acid; mouse model

Journal Title: Brain Research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.