Patients with stroke often exhibit evidence of abnormal functional connectivity (FC). However, whether and how anatomical distance affects FC at rest remains unclear in patients with chronic subcortical stroke. Eighty-six… Click to show full abstract
Patients with stroke often exhibit evidence of abnormal functional connectivity (FC). However, whether and how anatomical distance affects FC at rest remains unclear in patients with chronic subcortical stroke. Eighty-six patients with chronic (more than six months post-onset) subcortical stroke (44 left-sided patients and 42 right-sided patients) with different degrees of functional recovery, and 75 matched healthy controls underwent resting-state functional magnetic resonance imaging scanning. Positive functional connectivity strength (FCS) was computed for each voxel in the brain using a data-driven whole-brain resting state FCS method, which was further divided into short- and long-range FCS. Compared with healthy controls, patients with left-sided infarctions exhibited stronger global- and long-range FCS in the left sensorimotor cortex (SMC), and no significant intergroup difference was found for short-range FCS. No significant differences were found between the patients with right-sided infarctions and healthy controls for global, long- and short-range FCS. These findings suggested that the positive FCS alteration was connection-distance dependent within patients with left-sided chronic subcortical stroke. Also, a positive correlation was found between the FCS in the left SMC and the accuracy of the Flanker test, reflecting a compensatory FCS alteration for altered attention and executive function abilities exhibited by those with left-sided stroke.
               
Click one of the above tabs to view related content.