LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient neuronal targeting and transfection using RVG and transferrin-conjugated liposomes

Photo from archive.org

Effective transport of therapeutic nucleic acid to brain has been a challenge for the success of gene therapy for treating brain diseases. In this study, we proposed liposomal nanoparticles modified… Click to show full abstract

Effective transport of therapeutic nucleic acid to brain has been a challenge for the success of gene therapy for treating brain diseases. In this study, we proposed liposomal nanoparticles modified with brain targeting ligandsfor active brain targeting with enhanced BBB permeation and delivery of genes to brain. We targeted transferrin and nicotinic acetylcholine receptors by conjugating transferrin (Tf) and rabies virus glycoprotein (RVG) peptide to surface of liposomes. Liposomal formulations showed homogeneous particle size and ability to protect plasmid DNA against enzymatic degradation. These nanoparticles were internalized by brain endothelial cells, astrocytes and primary neuronal cells through energy-dependent endocytosis pathways. RVG-Tf coupled liposomes showed superior ability to transfect cells compared to liposomes without surface modification or single modification. Characterization of permeability through blood brain barrier (BBB) and functionality of designed liposomes were performed using an in vitro triple co-culture BBB model. Liposome-RVG-Tf efficiently translocated across in vitro BBB model and, consecutively, transfected primary neuronal cells. Notably, brain-targeted liposomes promoted in vivo BBB permeation. These studies suggest that modifications of liposomes with brain-targeting ligands are a promising strategy for delivery of genes to brain.

Keywords: targeting transfection; neuronal targeting; efficient neuronal; transferrin; brain; brain targeting

Journal Title: Brain Research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.