Astragaloside IV (AS-IV), a natural product derived from Radix Astragali (Astragalus membranaceus), is beneficial for the treatment of Alzheimer's disease (AD), but the mechanisms underlying this benefit are not completely… Click to show full abstract
Astragaloside IV (AS-IV), a natural product derived from Radix Astragali (Astragalus membranaceus), is beneficial for the treatment of Alzheimer's disease (AD), but the mechanisms underlying this benefit are not completely understood. Peroxisome proliferator-activated receptor gamma (PPARγ) and brain-derived neurotrophic factor (BDNF) are potential therapeutic targets for AD. In this study, we found that amyloid β protein fragment 1-42 oligomers (AβO) suppressed BDNF and PPARγ expression, and inhibited tyrosine receptor kinase B (TrkB) phosphorylation in cultured hippocampal neurons; these changes were ameliorated by treatment with AS-IV. Inhibition of PPARγ by genetic and pharmacological methods also blocked the effect of AS-IV on BDNF expression in AβO-treated cells. Importantly, exogenous BDNF protected against neurotoxicity and apoptosis induced by AβO, whereas inhibition of PPARγ reversed protective effects of AS-IV against these outcomes. In vivo data further revealed that AS-IV improved AβO-induced memory impairment and reduced apoptosis of hippocampal neurons. Moreover, AS-IV suppressed the AβO-induced reduction in BDNF by promoting PPARγ activation in the hippocampus. Taken together, these results indicate that AS-IV prevents AβO-induced memory impairment and hippocampal neuronal apoptosis, probably by promoting the PPARγ/BDNF signaling pathway.
               
Click one of the above tabs to view related content.