Pyramidal neurons in the neocortex that express nonphosphorylated neurofilaments (NPNFs) are especially vulnerable to degeneration in Alzheimer's disease. Since the basolateral nuclear complex of the amygdala (BNC) and cortical nuclear… Click to show full abstract
Pyramidal neurons in the neocortex that express nonphosphorylated neurofilaments (NPNFs) are especially vulnerable to degeneration in Alzheimer's disease. Since the basolateral nuclear complex of the amygdala (BNC) and cortical nuclear complex of the amygdala (CNC) are cortex-like structures, containing both pyramidal (PNs) and nonpyramidal neurons (NPNs), it is of interest to determine which cell types in the primate BNC and CNC are NPNF+. We also studied NPNF expression in the non-cortex-like nuclei of the amygdala (central and medial nuclei). Digitized images of sections through fetal, newborn, infant, and adult macaque brains stained for NPNFs, obtained from the Macaque Brain Resource (MacBrainResource, MBR), were analyzed. The pattern of NPNF immunoreactivity (NPNF-ir) in the BNC, CNC, and medial nucleus was essentially identical in all three age groups, but there were some age-dependent differences in the central nucleus. All BNC and CNC nuclei contained a moderate density of NPNF+ NPNs. Both the somata and the entire dendritic arborizations of these NPNs were stained. PNs with robust NPNF-ir in their somata and proximal dendrites were only seen in the basal magnocellular nucleus, where it appeared that virtually every PN was NPNF+. This pattern of NPNF expression is distinct from that seen in the mammalian neocortex, where NPNF+ neurons are almost entirely PNs, but is very similar to that seen in a recent study of the rat BNC. These findings, in conjunction with the cortical data, suggest the possibility that NPNF+ neuronal subpopulations in the BNC and CNC might be especially vulnerable in Alzheimer's disease.
               
Click one of the above tabs to view related content.