Current treatments for obesity do not reliably reduce body weight over time. New interventional strategies, including chemogenetics, carry promise based on preclinical animal studies. Here, we focused on the ventral… Click to show full abstract
Current treatments for obesity do not reliably reduce body weight over time. New interventional strategies, including chemogenetics, carry promise based on preclinical animal studies. Here, we focused on the ventral pallidum (VP) due to its clearly established role in eating behavior. Chronic inhibitory or excitatory chemogenetic activation was used to modulate the activity of VP-targeted neurons in rats on an obesogenic diet. Based on studies using acute VP manipulations, we hypothesized that VP inhibition would decrease weight gain, while VP stimulation would increase weight. Instead, both manipulations caused weight gain over time, and in a manner not clearly linked to consumption levels. We theorize that the complex reciprocal feedback between ventral striatal structures and metabolic centers likely underpin our unexpected findings. Regardless, this study suggests that the result of strategies to prevent obesity with chronic neuromodulation could be difficult to predict from prior preclinical studies that have used acute interventions.
               
Click one of the above tabs to view related content.