LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pubertal probiotics mitigate lipopolysaccharide-induced programming of the hypothalamic-pituitary-adrenal axis in male mice only

Photo from wikipedia

Puberty is a period of rapid cortical and neuronal development. Stress exposure during puberty programs the hypothalamic-pituitary-adrenal (HPA) axis responsiveness to future stressors. However, programming can result in an enduring… Click to show full abstract

Puberty is a period of rapid cortical and neuronal development. Stress exposure during puberty programs the hypothalamic-pituitary-adrenal (HPA) axis responsiveness to future stressors. However, programming can result in an enduring maladaptation of the HPA axis activity and can be associated with long-term anxiety- and depression-like behaviours. Probiotic treatment mitigates the effect of stress on mental health, suggesting that the gut microbiome may mediate the programming of the HPA axis. However, the mechanism underlying this effect remains elusive. Thus, we investigated the effect of probiotic exposure on lipopolysaccharide (LPS)-induced programming of the HPA axis and glucocorticoid receptor (GR) expression in the paraventricular (PVN), basolateral amygdala (BLA), piriform cortex (PIR), and medial prefrontal cortex (mPFC). Male and female mice were exposed to either probiotics or control skim milk and were treated with either saline or LPS during puberty. Prior to euthanasia in adulthood, mice were restrained for 30minutes. The results showed that pubertal LPS treatment permanently decreased GR expression in the PVN in milk fed control males. However, pubertal probiotic treatment blocked the LPS-induced decrease in GR expression in males. Given that this effect is limited to males, further research is required to better understand sex differences in the interactions between the gut microbiome and the programming of the HPA axis during puberty. Nevertheless, our findings suggest that the gut microbiome influences the neurophysiology of the HPA axis and mediates its programming in pubertal males. The prevention of GR reduction in the male PVN and PIR using probiotics illustrates the complexity of the gut-brain communication and compels continued investigation.

Keywords: hpa axis; axis; hypothalamic pituitary; induced programming; pituitary adrenal; mice

Journal Title: Brain Research Bulletin
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.