LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inhibiting microRNA-142-5p improves learning and memory in Alzheimer’s disease rats via targeted regulation of the PTPN1-mediated Akt pathway

Photo by hajjidirir from unsplash

OBJECTIVE MicroRNAs (miRNAs) have been recognized as possible biomarkers for Alzheimer's disease (AD). MiR-142-5p has been reported to be abnormally expressed in brain tissues. However, the role of miR-142-5p in… Click to show full abstract

OBJECTIVE MicroRNAs (miRNAs) have been recognized as possible biomarkers for Alzheimer's disease (AD). MiR-142-5p has been reported to be abnormally expressed in brain tissues. However, the role of miR-142-5p in AD pathogenesis keeps unclear. This study aimed to investigate the effect of miR-142-5p on the learning and memory of AD rats via regulation of protein tyrosine phosphatase nonreceptor type 1 (PTPN1)-mediated protein kinase B (Akt) pathway. METHODS The AD model was established by injection of Aβ1-42 oligomer once into the lateral ventricle of rats, and the spatial learning and memory ability of rats was measured. AD rats were injected with miR-142-5p or PTPN1 vectors to explore their functions in inflammation, Aβ, p-tau protein, apoptosis in brain tissues, and the effects on Akt pathway. The targeting relationship between miR-142-5p and PTPN1 was detected. RESULTS Overexpressed miR-142-5p, down-regulated PTPN1 and inactivated Akt pathway were exhibited in AD. MiR-142-5p targeted PTPN1 to mediate Akt pathway. Reduced miR-142-5p and elevated PTPN1 improved the behavior of AD rats. MiR-142-5p targeted PTPN1 to effectively inhibit Aβ formation and abnormal phosphorylation of p-tau protein, suppress the inflammation in the brain tissues of AD rat, and improve the survival rate of brain tissue cells. MiR-142-5p regulated PTPN1 to activate the Akt pathway, further inhibiting the apoptosis of brain neurons in AD rats. CONCLUSION Down-regulating miR-142-5p targets PTPN1 to activate Akt pathway, thus improving the learning and memory of AD rats and playing an anti-AD role.

Keywords: mir 142; akt pathway; learning memory; ptpn1; brain

Journal Title: Brain research bulletin
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.