BACKGROUND Electroconvulsive therapy (ECT) is a rapid and effective treatment for major depressive disorder. Chronic stress-induced depression causes dendrite atrophy and deficiencies in brain-derived neurotrophic factor (BDNF), which are reversed… Click to show full abstract
BACKGROUND Electroconvulsive therapy (ECT) is a rapid and effective treatment for major depressive disorder. Chronic stress-induced depression causes dendrite atrophy and deficiencies in brain-derived neurotrophic factor (BDNF), which are reversed by anti-depressant drugs. Electroconvulsive seizures (ECS), an animal model of ECT, robustly increase BDNF expression and stimulate dendritic outgrowth. OBJECTIVE The present study aims to understand cellular and molecular plasticity mechanisms contributing to the efficacy of ECS following chronic stress-induced depression. METHODS We quantify Bdnf transcript levels and dendritic spine density and morphology on cortical pyramidal neurons in mice exposed to vehicle or corticosterone and receiving either Sham or ECS treatment. RESULTS ECS rescues corticosterone-induced defects in spine morphology and elevates Bdnf exon 1 and exon 4-containing transcripts in cortex. CONCLUSIONS Dendritic spine remodeling and induction of activity-induced BDNF in the cortex represent important cellular and molecular plasticity mechanisms underlying the efficacy of ECS for treatment of chronic stress-induced depression.
               
Click one of the above tabs to view related content.