LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of an adaptive discharge coefficient to improve the accuracy of cross-ventilation airflow calculation in building energy simulation tools

Photo from wikipedia

Airflow network (AFN) model embedded in building energy simulation (BES) tools such as EnergyPlus is extensively used for prediction of cross-ventilation in buildings. The noticeable uncertainty in the measurement of… Click to show full abstract

Airflow network (AFN) model embedded in building energy simulation (BES) tools such as EnergyPlus is extensively used for prediction of cross-ventilation in buildings. The noticeable uncertainty in the measurement of the surface pressure, discharge coefficient, and simplifications applied to the orifice-based equation result in considerable discrepancies in the prediction of the cross-ventilation airflow rate values. Computational Fluid Dynamics (CFD) provides more accurate results comparing to the orifice-based equations although with an excessive computational cost. The aim of this study is, therefore, to improve the accuracy of the orifice-based model by development of an adaptive correlation for the discharge coefficient using CFD. Hence, a validated CFD model for the cross-ventilation of an unsheltered building is firstly developed using an experimental study. In the next step, by exploiting Latin hypercube sampling (LHS) approaches, a large CFD dataset of 750 scenarios for different building geometries (i.e. square cube, cuboid and long corridor) is generated; the dataset is then coupled to the AFN crossventilation model to obtain an adaptive correlation for the discharge coefficient as a function of the openings’ geometries and location using response surface (RSM) and radial basis function (RBF) models. Results show that the newly developed adaptive correlation successfully increases the accuracy of AFN model for the cross-ventilation modeling of unsheltered buildings as the relative errors for the airflow rate prediction of different building geometries are significantly decreased up to 28% in comparison with the cases with constant discharge coefficient and surface-averaged and local-surface wind pressure coefficients. Results, also demonstrate the importance of considering the value of the local-surface wind pressure in the AFN model for the square cube and cuboid building models.

Keywords: building; discharge coefficient; cross ventilation

Journal Title: Building and Environment
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.