Abstract This study discusses a full-scale Electric-Driven smart window from both an experimental and numerical point of view. The first part of this paper reports the experimental performances of the… Click to show full abstract
Abstract This study discusses a full-scale Electric-Driven smart window from both an experimental and numerical point of view. The first part of this paper reports the experimental performances of the investigated smart window, using a full-scale outdoor test-room. The tests are carried out during the summer under real sky conditions varying the state of the Electric-Driven window (clear and milky). In the second part, a numerical model is developed and validated using the data acquired during the in-situ experiments. Finally, the developed simulation model is used to assess the performances of the Electric-Driven window varying the switching control strategies (from clear to milky and vice versa) in a refurbishment case study of a building office facade located in the south of Italy. In particular, the reduction of the indoor air temperature (up to 2.1 °C), the reduction of cooling energy demand (up to about 41.0%), the primary energy saving (up to about 4.0%) and the reduction of carbon dioxide equivalent emissions (up to about 2.2%) are evaluated. The analysis is performed comparing the simulation results associated to a case with the Electric-Driven window with those where a typical double glass low-e window is used.
               
Click one of the above tabs to view related content.