LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

PLD1 promotes tumor invasion by regulation of MMP-13 expression via NF-κB signaling in bladder cancer.

Photo from wikipedia

Invasion of bladder cancer (BC) cells from the mucosa into the muscle layer is canonical for BC progression while phospholipase D isoform 1 (PLD1) is known to mediate development of… Click to show full abstract

Invasion of bladder cancer (BC) cells from the mucosa into the muscle layer is canonical for BC progression while phospholipase D isoform 1 (PLD1) is known to mediate development of cancer through phosphatidic acid (PA) production. We therefore used in silico, in vitro and in vivo approaches to detail the effect of PLD1 on BC invasion. In BC patients, higher levels of PLD1 expression were associated with poor prognoses. PLD1 knockdown significantly suppressed cellular invasion by human BC cells and matrix metalloproteinase-13 (MMP-13) was observed to mediate this effect. In our mouse bladder carcinogenesis model, the development of invasive BCs was suppressed by PLD1 knockout and a global transcriptomic analysis in this model indicated MMP-13 as a potential tumor invasion gene with NF-κB (nuclear factor-kB) as its transcriptional regulator. Furthermore, PA administration increased MMP-13 expression in line with NF-κB p65 phosphorylation levels. Collectively, we demonstrate that PLD1 promotes tumor invasion of BC by regulation of MMP-13 expression through the NF-κB signaling pathway and that PLD1 might be a potential therapeutic target to prevent clinical progression in BC patients.

Keywords: invasion; mmp expression; pld1; tumor invasion; cancer

Journal Title: Cancer letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.