LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

DT7 peptide-modified lecithin nanoparticles co-loaded with γ-secretase inhibitor and dexamethasone efficiently inhibit T-cell acute lymphoblastic leukemia and reduce gastrointestinal toxicity.

Photo from wikipedia

T-cell acute lymphoblastic leukemia (T-ALL) is a serious hematologic malignancy and glucocorticoid resistance is the main recurrent cause for a high relapsed and death rate. Here, we proposed an effective… Click to show full abstract

T-cell acute lymphoblastic leukemia (T-ALL) is a serious hematologic malignancy and glucocorticoid resistance is the main recurrent cause for a high relapsed and death rate. Here, we proposed an effective therapeutic regimen of combining gamma-secretase inhibitors (GSIs) with dexamethasone (DEX) to overcome glucocorticoid resistance. Moreover, the bone marrow targeting DT7 peptide-modified lecithin nanoparticles co-loaded with DEX and GSI (TLnp/D&G) were developed to enhance T-ALL cells recognition and endocytosis. In vitro cytotoxicity studies showed that TLnp/D&G significantly inhibited cell survival and promoted apoptosis of T-ALL cells. Mechanically, we found that GSIs promoted DEX-induced cell apoptosis by two main synergetic mechanisms: 1) GSIs significantly upregulated glucocorticoid receptor (GR) expression in T-ALL and restored the glucocorticoid-induced pro-apoptotic response. 2) Both DEX and GSI synergistically inhibited BCL2 and suppressed the survival of T-ALL cells. Furthermore, in vivo studies demonstrated that TLnp/D&G showed high bone marrow accumulation and better antileukemic efficacy both in leukemia bearing models and in systemic Notch1-induced T-ALL models, with excellent biosafety and reduced gastrointestinal toxicity. Overall, our study provides new strategies for the treatment of T-ALL and promising bone marrow targeting systems with high transformation potential.

Keywords: cell acute; peptide modified; dt7 peptide; leukemia; acute lymphoblastic; lymphoblastic leukemia

Journal Title: Cancer letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.