LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Delayed auger recombination in silicon measured by time-resolved X-ray scattering

Photo from wikipedia

Abstract We report a new method of measuring the non-radiative recombination rate in bulk Silicon. Synchrotron time-resolved x-ray scattering (TRXS) combines femtometer spatial sensitivity with nanosecond time resolution to record… Click to show full abstract

Abstract We report a new method of measuring the non-radiative recombination rate in bulk Silicon. Synchrotron time-resolved x-ray scattering (TRXS) combines femtometer spatial sensitivity with nanosecond time resolution to record the temporal evolution of a crystal lattice following intense ultrafast laser excitation. Modeling this data requires an Auger recombination time that is considerably slower than previous measurements, which were made at lower laser intensities while probing only a relatively shallow surface depth. We attribute this difference to an enhanced Coulomb interaction that has been predicted to occur in bulk materials with high densities of photoexcited charge carriers.

Keywords: time; resolved ray; time resolved; ray scattering; recombination; auger recombination

Journal Title: Current Applied Physics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.