LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Radial heterostructure and interface effects on thermoelectric transport properties of Bi/Sn and Bi/Sb core/shell nanowires

Photo from wikipedia

Abstract The thermoelectric transport properties of Bi/Sn and Bi/Sb core/shell (C/S) nanowires grown by the method of on-film formation of nanowires were systematically investigated. The electrical conductivity and Seebeck coefficient… Click to show full abstract

Abstract The thermoelectric transport properties of Bi/Sn and Bi/Sb core/shell (C/S) nanowires grown by the method of on-film formation of nanowires were systematically investigated. The electrical conductivity and Seebeck coefficient of nanowires with different diameters were measured as a function of the temperature. The contribution of Sn and Sb shells to the total transport in the C/S nanowires was determined using analytical fitting based on the parallel combination of the conductive system model. The carrier-interface boundary scattering at the C/S interface was quantitatively evaluated as the sheet resistance. In addition, the effect of hole doping on the transport properties was also observed in the Bi/Sn C/S nanowires.

Keywords: core shell; transport properties; properties core; transport; thermoelectric transport; interface

Journal Title: Current Applied Physics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.