LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Laser scribed graphene/polymer composites: A possible verification of carbon nano-coil inductors

Photo from wikipedia

Abstract There is great interest in so-called nano-electronic devices due to the furious rate of device miniaturization. Fabrica-tion of micro and nano scale resistors and capacitors have already been achieved… Click to show full abstract

Abstract There is great interest in so-called nano-electronic devices due to the furious rate of device miniaturization. Fabrica-tion of micro and nano scale resistors and capacitors have already been achieved steadily, but so far, there has been little development in the way of nano-scale coil inductors. This is because of the physical limitations in miniaturiza-tion of the design of a solenoid with wires coiled around a metallic core. So, while transistors get steadily smaller, basic inductors in electronics remained relatively bulky. Few methods exist for creating conductive polymer coils and graphene-based kinetic nano-inductors, but their large-scale fabrication process is complex and mostly beyond the current commercial technology available. So, a simpler, scalable, and robust fabrication technique is needed to overcome this bottleneck. In this work we demonstrate a new technique consisting of the laser lithography using a laser engraver of a (poly)vinyl alcohol (PVA)/graphene oxide film composite which results in a large inductive effect. We attribute this behavior to the formation of high curvature twisted screw dislocation type conductive pathways composed of polyacetylene chains linked by pi-pi interactions to reduced graphene oxide flakes resulting in inductive effect.

Keywords: scribed graphene; coil inductors; polymer; laser scribed; coil; nano

Journal Title: Current Applied Physics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.