LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigation of ultra-thin and flexible Au–Ag–Au transparent conducting electrode

Photo from wikipedia

Abstract The performance of ultra-thin Au–Ag–Au tri-layer film deposited thermally over a flexible substrate is investigated using structural, optical, mechanical and electrical-transport measurements. The optimum total thickness of the tri-layer… Click to show full abstract

Abstract The performance of ultra-thin Au–Ag–Au tri-layer film deposited thermally over a flexible substrate is investigated using structural, optical, mechanical and electrical-transport measurements. The optimum total thickness of the tri-layer for high transparency and conductivity is determined to be around 8 nm using a theoretical model. The Au–Ag–Au tri-layer shows maximum transmittance (≅ 62%) at wavelength 500 nm. XRD pattern shows peak corresponding to (111) plane of Au and/or Ag. Sheet resistance (≅ 10.42 Ω/□) measured at 300 K using four probe technique is stable up to 150 °C. Hall effect measurements show high conductivity (1.34 × 105 (Ω cm)−1), carrier concentration (2.48 × 1023/cm3), and mobility (3.4 cm2/Vs). Scotch tape test confirms good adhesion of the film onto PET substrate. Bending-twisting tests using an indigenous apparatus indicate high resistance-stability even after 50,000 cycles. These results imply the viability of Au–Ag–Au tri-layer film as a transparent conducting electrode worth exploring for optoelectronic applications.

Keywords: transparent conducting; conducting electrode; tri layer; ultra thin

Journal Title: Current Applied Physics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.