LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Magnetic anisotropy of functionalized multi-walled carbon nanotube suspensions

Photo from archive.org

Abstract We report on the magnetic properties of stable suspensions from oxidized Multiwalled Carbon Nanotubes (MWCNT) functionalized with aminopyrene (AP). MWCNT form π−π stacking adducts with AP (AP-MWCNT), originating homogenous,… Click to show full abstract

Abstract We report on the magnetic properties of stable suspensions from oxidized Multiwalled Carbon Nanotubes (MWCNT) functionalized with aminopyrene (AP). MWCNT form π−π stacking adducts with AP (AP-MWCNT), originating homogenous, stable, suspensions in N,N-dimethylformamide (DMF) or melted agarose. First, we investigated the magneto-optical properties of these adducts. When applying series of pulsed magnetic fields to nanotube suspensions in DMF, the pattern of light dispersed increased during the magnetic pulse and decreased in the intervals, a behavior consistent with magnetic field induced orientation of the adducts. When adducts were suspended in a melted agarose gel under an external magnetic field, the extinction coefficient of polarized light through the gel, was larger when the polarization plane was parallel to the magnetic field direction. Based on the magneto-optical responses observed, we further investigated the magnetic properties of AP-MWCNT implementing measurements with Superconducting Quantum Interference Device, Zero Field Cooling and Field Cooling, Thermogravimetric and Differential Scanning Calorimetry. Pre-oriented AP-MWCNT suspensions depicted a clear superparamagnetic character with hysteresis loops revealing larger magnetic susceptibility values along their longitudinal axis. In summary, magneto-optical and SQUID measurements revealed that nanotube adducts in suspension, behave as nanoscale compass needles aligning their long axis parallel to externally applied magnetic fields.

Keywords: carbon; nanotube suspensions; field; magneto optical; magnetic anisotropy; magnetic field

Journal Title: Carbon
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.