LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sculpturing graphene wrinkle patterns into compliant substrates

Photo from wikipedia

Abstract In this work we present a fabrication process for sculpturing wrinkled structures into soft polymers by thermal treatment of graphene flakes. This is accomplished by the imposition of a… Click to show full abstract

Abstract In this work we present a fabrication process for sculpturing wrinkled structures into soft polymers by thermal treatment of graphene flakes. This is accomplished by the imposition of a biaxial compressive stress field to the graphene flakes by controlled heating of graphene/polymer composites. The wrinkling patterns (amplitude, wavelength) are linearly related to the thickness of the graphene as in the case of a stiff film deposited on a compliant substrate. The orientation of the wrinkles is controlled by the geometry of the flakes, such as that long and narrow flakes exhibit perfectly parallel wrinkles perpendicular to the longer edge, while more equilateral specimens are wrinkled without any preferred orientation in the flake interior. Kelvin probe measurements showed that this type of wrinkling does not affect the surface potential of the graphene flakes. The universality of the technique is validated by sculpturing two different polymers, using mechanically exfoliated flakes as well as large graphene prepared by chemical vapor deposition. We thus demonstrate that the present approach is an excellent method for patterning the surface of soft matter in a number of applications with nanoscale features of lateral dimensions as low as ∼50 nm.

Keywords: graphene wrinkle; graphene; wrinkle patterns; patterns compliant; graphene flakes; sculpturing graphene

Journal Title: Carbon
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.