LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transferable ultra-thin multi-level micro-optics patterned by tunable photoreduction and photoablation for hybrid optics

Photo from wikipedia

Abstract Next-generation hybrid optics will provide superior performances over traditional optics by combining the advantages of refractive, reflective, and diffractive optics and metasurfaces. Hybrid optics have been realized by integrating… Click to show full abstract

Abstract Next-generation hybrid optics will provide superior performances over traditional optics by combining the advantages of refractive, reflective, and diffractive optics and metasurfaces. Hybrid optics have been realized by integrating diffractive optical structures to the top surface of traditional bulk refractive or reflective optics. However, high-resolution manufacturing requirement of diffractive patterns on top of free-form refractive or reflective optical surfaces have hindered the wide-spread dissemination of hybrid optics. In this paper, we demonstrate a transferable ultra-thin micro-optics having multi-level transmittance and phase profiles which are arbitrarily patterned by tunable photoreduction and photoablation of graphene oxides (GO) using femtosecond (fs) direct laser writing. A 5 × 5 array of multi-level ultra-thin micro diffractive lens having a focal length of 15 mm was exemplarily patterned with real-time laser power control; the resulting spot size was smaller than 14 μm with the suppression of diffractive side peaks by 14.9% at the first order and 10.8% at the second order ones. This laser-patterned diffractive lens array was successfully transferred to the surface of a refractive cylindrical lens via polydimethylsiloxane (PDMS) as the flexible/stretchable substrate; the resulting optical performance agrees well with the theoretical simulation result. This new fabrication method will pave a way to novel hybrid optical systems.

Keywords: ultra thin; transferable ultra; hybrid optics; multi level; micro optics; optics

Journal Title: Carbon
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.