LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Orthogonal pattern of spinnable multiwall carbon nanotubes for electromagnetic interference shielding effectiveness

Photo from wikipedia

Abstract The need for thin and lightweight electromagnetic interference shielding materials is rapidly increasing in several industries, such as aerospace and telecommunication. This research finds that a shielding material, which… Click to show full abstract

Abstract The need for thin and lightweight electromagnetic interference shielding materials is rapidly increasing in several industries, such as aerospace and telecommunication. This research finds that a shielding material, which is developed by the orthogonal pattern of spinnable multiwall carbon nanotubes (MWNTs), is ultra-light weight, thin, and has a high shielding effectiveness (SE). An orthogonal pattern, generated by just alignment of the spinnable MWNTs without adding any support materials such as polymers, ceramics, and magnets demonstrates that it is possible to efficiently attenuate electromagnetic interference (EMI) in the X-band frequency range (8.2–12.4 GHz). EMI SE in the developed shielding material is about 19.2 dB with a specific shielding effectiveness (SSE)/t (thickness) value of 73,633 dB cm2 g−1 at a thickness of about 4.48 μm. In addition, absorption effectiveness in this shielding material is as high as 96.3%, which provides excellent ability to reduce the secondary damage by reflection.

Keywords: orthogonal pattern; carbon; electromagnetic interference; shielding effectiveness

Journal Title: Carbon
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.