Abstract Spherical carbon molecular sieves (CMS) have selective adsorptive properties which are suitable for separation and purification of gas mixtures. Precise methods of characterization are needed to understand the performance… Click to show full abstract
Abstract Spherical carbon molecular sieves (CMS) have selective adsorptive properties which are suitable for separation and purification of gas mixtures. Precise methods of characterization are needed to understand the performance of CMS in separation processes. To this end, the pore size distribution (PSD) of four carbon molecular sieves was evaluated experimentally using immersion calorimetry and complemented with gas adsorption measurements at cryogenic temperatures for N2, O2 and Ar, and at 273 K for CO2. Theoretical pore size distributions were estimated using two-dimensional non-local Density Functional Theory (2D-NLDFT) models. Calorimetry results showed that B and C samples had a narrow pore size distribution with pores below 0.7 nm. Meanwhile, the pore size distributions calculated from O2 and Ar adsorption isotherms, gave an apex in the 0.5–0.6 nm region for all the carbons together with a growing development of porosity at around 0.8 nm and above for carbons A and D. The agreement observed between experiments and theory confirmed the validity of the theoretical 2D-NLDFT models to anticipate the PSD. Carbon C with pores exclusively below 0.7 nm separated CO2 and CH4 while carbon D with pores in the supermicroporous region separated propane and propylene chromatographically.
               
Click one of the above tabs to view related content.