LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Scalable synthesis of lotus-seed-pod-like Si/SiOx@CNF: Applications in freestanding electrode and flexible full lithium-ion batteries

Photo by saffu from unsplash

Abstract Intensive attempts have been devoted to solving the inferior cycling stability of Si-based electrode induced by the large volume change of Si. However, the complex synthesis procedures make many… Click to show full abstract

Abstract Intensive attempts have been devoted to solving the inferior cycling stability of Si-based electrode induced by the large volume change of Si. However, the complex synthesis procedures make many strategies much low practical significances. Together with the inferior cycling stability, an easy and scalable fabrication strategy is still a great challenge for implementing Si anode in commercial batteries. This work uses a simple water steam selective etching method to simultaneously engineer the pores and the confinement of commercial Si/SiOx in carbon paper electrodes, leading to a significant improvement in electrode flexibility and cycle life. The as-prepared freestanding lotus-seed-pod-like steam-etched Si/SiOx@CNF electrode shows a high capacity retention of 137% after 1000 cycles at 3 A g−1. It also possesses outstanding electrochemical performance in a flexible lithium-ion full battery with LiCoO2/steam-etched CNF as the cathode, even under bended condition. This simple approach may offer a pathway for the application of Si-based anode in commercialization and/or flexible energy storage devices.

Keywords: lotus seed; siox; seed; cnf; seed pod; electrode

Journal Title: Carbon
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.