LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A strategy and detailed explanations to the composites of Si/MWCNTs for lithium storage

Photo from wikipedia

Abstract Nano-Si/MWCNTs composite was a representative solution to improve Si-based anode material’s rate performance in lithium-ion batteries (LIBs). However, the problems of easy agglomeration of silicon nanoparticles and carbon nanotubes… Click to show full abstract

Abstract Nano-Si/MWCNTs composite was a representative solution to improve Si-based anode material’s rate performance in lithium-ion batteries (LIBs). However, the problems of easy agglomeration of silicon nanoparticles and carbon nanotubes hindered Si/MWCNT’s further development. In this study, we combine silicon nanoparticles with MWCNTs cleverly by utilizing freeze-drying method to solve the problems and enhance silicon-based material’s rate performance. Compared with Si-MWCNTs composite treated by electric blast-drying method, the rate performance of Si-MWCNTs treated by freeze-drying is significantly improved, especially at different current densities. When Si-MWCNTs are encapsulated in FPC (flour-derived porous carbon, FPC), the as-obtained Si-MWCNTs-PVPC-FPC-SC-1 (sucrose-derived carbon, SC) prepared by freeze-drying method delivers a reversible capacity of 1347.5 mAh g-1 at 0.1 A g-1 after cycling at 5 A g-1 and a reversible capacity of 501 mAh g-1 at 1 A g-1 after 500 cycles. Our study demonstrates that the freeze-drying method can solve the problems of easy agglomeration of silicon nanoparticles and MWCNTs as well as improve Si-based anode’s rate performance for LIBs. The synthetic route presented in this paper is low-cost and easy to scale up for silicon-carbon (Si/C) composites with high rate performance and long cycle life.

Keywords: freeze drying; drying method; rate performance; rate; silicon

Journal Title: Carbon
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.