LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High pressure high temperature synthesis of highly boron doped diamond microparticles and porous electrodes for electrochemical applications

Photo from wikipedia

Abstract High pressure high temperature (HPHT) synthesis of crystallographically well-defined boron doped diamond (BDD) microparticles, suitable for electrochemical applications and using the lowest P and T (5.5 GPa and 1200 °C) growth… Click to show full abstract

Abstract High pressure high temperature (HPHT) synthesis of crystallographically well-defined boron doped diamond (BDD) microparticles, suitable for electrochemical applications and using the lowest P and T (5.5 GPa and 1200 °C) growth conditions to date, is reported. This is aided through the use of a metal (Fe–Ni) carbide forming catalyst and an aluminum diboride (AlB2) boron source. The latter also acts as a nitrogen sequester, to reduce boron-nitrogen charge compensation effects. Raman microscopy and electrochemical measurements on individual microparticles reveal they are doped to metal-like levels, contain negligible sp2 bonded carbon and display a large aqueous solvent window. A HPHT compaction process is used to create macroscopic porous electrodes from the BDD microparticles. Voltammetric analysis of the one-electron reduction of Ru(NH3)63+ is used to identify the fundamental electrochemical response of the porous material, revealing large capacitive and resistive components to the current-voltage curves, originating from solution trapped within the pores. Scanning electrochemical cell microscopy is employed to map the local electrochemical activity and porosity at the micron scale. Such electrodes are of interest for applications which require the electrochemical and mechanical robustness properties of BDD, e.g. when operating under high applied potentials/currents, but with the additional benefits of a large, electrochemically accessible, surface area.

Keywords: microscopy; boron; pressure high; high pressure; high temperature; boron doped

Journal Title: Carbon
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.