Abstract Here, the concept of thick electrode is utilized to design a-17 mm three-dimensional (3D) all-carbon frameworks with remarkable structural stability as high-areal-capacity anode for lithium-ion batteries (LIBs). The framework… Click to show full abstract
Abstract Here, the concept of thick electrode is utilized to design a-17 mm three-dimensional (3D) all-carbon frameworks with remarkable structural stability as high-areal-capacity anode for lithium-ion batteries (LIBs). The framework involves the rational design of graphite fibers (GFs) bonded with pyrolytic carbon (PC) and graphite nanoplatelets (GNP), offering a unique architecture and a scalable production approach. The as-fabricated 3D-GF/PC/GNP electrode with a high mass loading of ≈30 mg cm−2 can deliver an unexpected high initial and reversible areal capacity of 23.53 and 11.63 mA h cm−2 at current density of 2.0 mA cm−2, impressive rate performance and cyclic stability. Both theoretical simulations and experimental analyses show that the excellent performance of the electrode can be attributed to the incorporation of GNP that modulates the electronic conductivity of the framework, enabling easier Li-ion intercalation/deintercalation pathway to promote the pseudocapacitive and surface adsorption Li-ion storage.
               
Click one of the above tabs to view related content.