Four carboxymethyl celluloses (CMCs) differing in molecular weight (MW) and degree of substitution (°DS) were initially characterized in NaCl solution (0.1 M) and on properties of emulsion-type sausage models. The… Click to show full abstract
Four carboxymethyl celluloses (CMCs) differing in molecular weight (MW) and degree of substitution (°DS) were initially characterized in NaCl solution (0.1 M) and on properties of emulsion-type sausage models. The impact of the different CMCs (0-2 wt%) on the rheological behavior and firmness of an emulsion-type sausage models containing 1.8wt% NaCl was studied. Rheology (unheated/heated) and firmness (heated) showed an increasing effect with increasing CMC concentrations. Addition of>1wt% CMC led to a decrease in storage modulus of the unheated/heated batter and to a decrease in firmness of heated independent of the CMC-type used. CLSM revealed that high amounts of CMCs prevented formation of a coherent protein matrix. Water-binding capacity indicated that CMC contributed to the water-retention capability of sausage batters. Small differences between the CMCs were observed using various °DS and similar MW. Results indicate that the addition of low CMC concentrations (≤0.5wt%) may help to reduce fat content.
               
Click one of the above tabs to view related content.