Ciprofloxacin is a broad-spectrum fluoroquinolone antibiotic used to treat bacterial infections; however, its limited aqueous solubility inhibits its broader clinical uses. This study investigated the complexation effect of mono-6-deoxy-6-aminoethylamino-β-cyclodextrin on… Click to show full abstract
Ciprofloxacin is a broad-spectrum fluoroquinolone antibiotic used to treat bacterial infections; however, its limited aqueous solubility inhibits its broader clinical uses. This study investigated the complexation effect of mono-6-deoxy-6-aminoethylamino-β-cyclodextrin on the aqueous solubility and bioavailability of ciprofloxacin. During complexation, the oval-shaped cavity induced by mono-aminoethylamine substitution on the primary rim of β-cyclodextrin, was considered to be a key factor according to NMR spectroscopy and molecular modeling studies. The ciprofloxacin with mono-6-deoxy-6-aminoethylamino-β-cyclodextrin complex was characterized using FE-SEM, DSC, FT-IR, T1 relaxation, 2D NOESY, and DOSY NMR spectroscopy and molecular modeling studies. The solubility property of ciprofloxacin complexed with mono-6-deoxy-6-aminoethylamino-β-cyclodextrin was enhanced by seven-fold compared to that of pure ciprofloxacin. Furthermore antibacterial activity of that complex against methicillin-resistant Staphylococcus aureus was enhanced and it clearly showed the growth inhibition. The mono-6-deoxy-6-aminoethylamino-β-cyclodextrin has the potential to be utilized for other oblong guest molecules besides ciprofloxacin based on the novel induced elliptical cavity.
               
Click one of the above tabs to view related content.