LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Production of heparin and λ-carrageenan anti-heparanase derivatives using a combination of physicochemical depolymerization and glycol splitting.

Photo from wikipedia

Strongly associated with tumor angiogenesis and metastasis, the enzyme heparanase is an endo-β-d-glucuronidase which is overexpressed in the tumor microenvironment. Its inhibition could be one of the most promising anti-angiogenic… Click to show full abstract

Strongly associated with tumor angiogenesis and metastasis, the enzyme heparanase is an endo-β-d-glucuronidase which is overexpressed in the tumor microenvironment. Its inhibition could be one of the most promising anti-angiogenic approaches to date. Although heparin is known as a good heparanase inhibitor, it also possesses major anticoagulant properties that may be incompatible with its use as an anti-angiogenic agent, hence the considerable interest for other sources of sulfated polysaccharides. Recent investigations point to λ-carrageenans, highly sulfated galactans with a tremendous potential that are found in red algae. This study describes the production of low-molecular-weight (LMW) heparins and λ-carrageenans, using a combination of glycol splitting and ultrasonically-assisted radical hydrolysis using hydrogen-peroxide. The structural characteristics, as well as the anticoagulant and antiheparanase activities of the resulting products were assessed. The best candidate was a LMW glycol-split λ-carrageenan that displayed major anti-heparanase properties, with an IC50 of 7.32ng/mL and a close-to-zero anticoagulant activity.

Keywords: heparanase; heparin; anti heparanase; glycol splitting; using combination; glycol

Journal Title: Carbohydrate polymers
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.