LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nano iron oxide impregnated in chitosan bead as a highly efficient sorbent for Cr(VI) removal from water.

Photo from wikipedia

Using Fe(III) salts and chitosan, nano iron oxide impregnated in chitosan bead (NIOC) was successfully synthesized for aqueous Cr(VI) detoxification via sol-gel technique without any additional crosslinking agent. NIOC characterization… Click to show full abstract

Using Fe(III) salts and chitosan, nano iron oxide impregnated in chitosan bead (NIOC) was successfully synthesized for aqueous Cr(VI) detoxification via sol-gel technique without any additional crosslinking agent. NIOC characterization demonstrated that the iron in NIOC mainly existed as nano akaganeite (β-FeOOH) and complex with chitosan. Intraparticle diffusion was the major rate-limiting step. The maximal adsorption capacity was 69.8mg/g (pH 5.0, 20°C). Normal concentration of coexisting anions (SO42-, CO32-, SiO32-) showed insignificant competition, whereas PO43- suppressed the Cr(VI) sorption. Cr(VI)-loaded NIOC could be effectively regenerated by alkaline solutions. Column adsorption runs using granular NIOC could effectively treat about 1600 bed volumes of Cr(VI) solution (from 3.7mg Cr/L in influent to <0.5mg Cr/L in effluent). The Cr(VI) removal mechanisms involved the direct sorption of Cr(VI) (electrostatic attraction and ligand exchange), reduction of Cr(VI) into Cr(III) and re-sorption of Cr(III) via chelation on NIOC surface.

Keywords: iron oxide; oxide impregnated; impregnated chitosan; nano iron; iron; chitosan bead

Journal Title: Carbohydrate polymers
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.