LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Facile approach to the fabrication of 3D cellulose nanofibrils (CNFs) reinforced poly(vinyl alcohol) hydrogel with ideal biocompatibility.

Photo by sergio_as from unsplash

In this study, the reinforcing effects of cellulose nanofibrils (CNFs) on poly (vinyl alcohol) (PVA) matrix were explored. And ethylene glycol was used to enhance the water content and phosphate… Click to show full abstract

In this study, the reinforcing effects of cellulose nanofibrils (CNFs) on poly (vinyl alcohol) (PVA) matrix were explored. And ethylene glycol was used to enhance the water content and phosphate buffer saline (PBS) absorbency. The morphological aspects of the hydrogel were studied by transmission electron microscope (TEM) and scanning electron microscopy (SEM). The presence of interactions, changes in crystallinity as well as thermal behaviour were investigated by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and thermogravimetry respectively. With the increase of CNFs concentration, the composite greatly improved its mechanical strength while maintaining remarkable ductility through tensile test results. The positive results of cell toxicity test suggested our porous hydrogel could provide ideal cell growth environment. This work revealed that CNFs hydrolysed by bacterial cellulose could perform as a perfect reinforcing agents which is of great interest in the fields of biotechnology and biomedicine with the potential values in cell culture, co-cultivation, as well as biomedical scaffold materials.

Keywords: vinyl alcohol; cellulose nanofibrils; nanofibrils cnfs; poly vinyl

Journal Title: Carbohydrate polymers
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.