LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Degradation regulated bioactive hydrogel as the bioink with desirable moldability for microfluidic biofabrication.

Photo by connormisset from unsplash

Bioink development is vital in biofabriacation for generating three-dimensional (3D) tissue-like constructs. As potential candidates of bioinks, hydrogels need to meet the requirements of good moldability, initially strong mechanical properties… Click to show full abstract

Bioink development is vital in biofabriacation for generating three-dimensional (3D) tissue-like constructs. As potential candidates of bioinks, hydrogels need to meet the requirements of good moldability, initially strong mechanical properties and prominent bioactivity to guarantee cell vitality and further assembly. Enzyme-induced dynamic degradation is an efficient and biocompatible approach to improve the bioactivity of hydrogels through releasing space continuously for cell proliferation and promoting the functional establishing of engineered tissue. Here a novel bioink was designed by introducing alginate lyase into composite Alginate-GelMA hydrogels. Results showed that bioink with proper lyase content exhibited desirable modability and cytocompatibility. Then cell-laden osteon-like microfibers were engineered with the microfluidic device and diverse complex 3D constructs were also successfully assembled. This degradation-regulated bioink showed great promise in a variety of applications in tissue engineering and biomedical investigation.

Keywords: bioink; moldability; degradation; bioactive hydrogel; regulated bioactive; degradation regulated

Journal Title: Carbohydrate polymers
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.