LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Superparamagnetic IPN gels of carrageenan/PHEMA excelling in shape retention.

Photo from archive.org

Iron oxide nanoparticles-incorporated carrageenan (CAR)/PHEMA composites of interpenetrating network (IPN) type were successfully prepared by in situ ferrite synthesis in the polymer network. The IPN structure was constructed at CAR/PHEMA… Click to show full abstract

Iron oxide nanoparticles-incorporated carrageenan (CAR)/PHEMA composites of interpenetrating network (IPN) type were successfully prepared by in situ ferrite synthesis in the polymer network. The IPN structure was constructed at CAR/PHEMA compositions of 15/85 and 40/60 (wt/wt) by polymerization and cross-linking of 2-hydroxyethylmethacrylate as an impregnating solvent of CAR gels. As a result of this IPN construction, the composites were firm and showed a good shape-retentivity in their gelatinous state. SQUID magnetometry and X-ray diffractometry were conducted for evaluation of the magnetic property of the inorganic-hybridized IPN composites. Magnetite particles with 10-30nm sizes were distributed inside the IPNs treated with the repeatable ferrite synthesis; thereby, the hybrids displayed a superparamagnetic character at ambient temperature. Specifically, the 40/60 CAR/PHEMA IPN imparted a practically passable value (10-15emu (g sample)-1) of saturation magnetization. The present IPN system offers a potential for application as a biocompatible magnetic material used in hydro-surroundings.

Keywords: shape; car phema; phema; superparamagnetic ipn; ipn

Journal Title: Carbohydrate polymers
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.