Layer-by-layer (LbL) self-assembly of multilayered liposomes is used to improve the stability of conventional liposomes. In this study, the LbL technology was used to prepare novel multilayered liposomes from chitooligosaccharide… Click to show full abstract
Layer-by-layer (LbL) self-assembly of multilayered liposomes is used to improve the stability of conventional liposomes. In this study, the LbL technology was used to prepare novel multilayered liposomes from chitooligosaccharide and N-succinyl-chitosan. We propose that this preparation can be used as a transdermal drug delivery system (TDDS) to enhance stability against surfactants and control drug release. Particle size increased with the number of layers in the multilayer and the zeta potential varied between positive and negative values with alternate deposition of polyelectrolytes. Finally, approximately 300-400nm-thick four-layered liposomes were prepared. These liposomes were more stable against surfactants and showed a relatively high release of quercetin at pH 5.5 than the uncoated liposomes as assessed via in vitro drug release and skin permeation studies. In summary, the multilayered liposomes showed potential for use as a surfactant-stable TDDS that effectively enhanced the permeation of quercetin, a poorly soluble drug, into the skin.
               
Click one of the above tabs to view related content.