LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

γ-Cyclodextrin-phenylacetic acid mesh as a drug trap.

Photo by schluditsch from unsplash

In this study, we developed a nanoporous biodegradable mesh, bioinspired by the spider web, which is prepared via electrospinning using γ-cyclodextrin (γ-CD) conjugated with phenylacetic acid (PA), named γ-CDP. The… Click to show full abstract

In this study, we developed a nanoporous biodegradable mesh, bioinspired by the spider web, which is prepared via electrospinning using γ-cyclodextrin (γ-CD) conjugated with phenylacetic acid (PA), named γ-CDP. The resulting γ-CDP has a microfibrous or microspherical shape and contains drug trap meshlike γ-CD pores. These γ-CDP micromeshes (microspheres or microfibers) enable efficient drug capture and drug transport into deep γ-CDP nanocompartments or out of the γ-CDP web, resulting in a driving domain for a 4-week drug release. When used to deliver chemotherapeutic agents to xenografted tumors, the γ-CDP implants caused nearly complete tumor regression for 4 weeks after single administration. This strategy of a drug trap biodegradable mesh (with low density) will make drug containers uniquely attractive for the development of therapeutic implants and functional biomedical devices.

Keywords: drug; cyclodextrin phenylacetic; drug trap; phenylacetic acid

Journal Title: Carbohydrate polymers
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.