LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An innovative synthesis of MoO3/Ag nanocomposite and catalytic application of immobilized molybdenum complex on cellulose extracting from Carthamus tinctorius.

Photo by chuttersnap from unsplash

Extracted microcrystalline cellulose from Carthamus tinctorius plant was oxidized by sodium metaperiodate and a novel molybdenum schiff base complex was supported on this natural cellulose (MoSMC@MC). Then, micro biopolymer silver/… Click to show full abstract

Extracted microcrystalline cellulose from Carthamus tinctorius plant was oxidized by sodium metaperiodate and a novel molybdenum schiff base complex was supported on this natural cellulose (MoSMC@MC). Then, micro biopolymer silver/ immobilized molybenum complex on natural cellulose (Ag/MoSMC@MC) was synthesized at the presence of Sesbania sesba plant and charaterized by SEM, FT-IR, TGA, and EDAX. The catalytic efficiency of Ag/MoSMC@MC was exploited as a heterogenous bio-catalyst in the selective oxidation of alcohols. The reactions were conducted using catalytic amounts of Ag/MoSMC@MC and t-BuOOH under solvent free conidtion to obtain desired aldehydes and ketones in high yields and excellent selectivity. Long-term stability and reproducibility in consecutive runs were feature of this microcomposite. At second part of this work, a novel strategy was reported to obtain green nanocomposites. Herein, addition of silver nitrate to plant solution led to the decomposition of the organic to inorganic polymer. As results, MoO3/Ag nanocomposite was prepared and its characteristics were investigated using TEM, and XRD to confirm the shape and structure.

Keywords: cellulose; complex; moo3 nanocomposite; carthamus tinctorius; molybdenum

Journal Title: Carbohydrate polymers
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.