LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Disk-like nanocrystals prepared by solvolysis from regenerated cellulose and colloid properties of their hydrosols.

Photo from archive.org

One possible way of obtaining cellulose nanocrystals and aqueous sols with novel properties is based on modification of supramolecular structure of the polysaccharide. This modification involves rearrangements of hydrogen bonds… Click to show full abstract

One possible way of obtaining cellulose nanocrystals and aqueous sols with novel properties is based on modification of supramolecular structure of the polysaccharide. This modification involves rearrangements of hydrogen bonds and has an effect on polymer morphology, formation of surface reactive sites and interface interactions. Disc-like nanocrystals of cellulose II were prepared by solvolysis of regenerated cellulose in acetic acid/octanol medium in the presence of 0.4 mol% of phosphotungstic acid. The starting cellulose samples were dissolved and regenerated in the NaOH/thiourea system. Cellulose nanocrystals were studied by transmission electron microscopy, atomic force microscopy, dynamic light scattering, FTIR spectroscopy, XRD and thermogravimetric analysis. Colloidal stability of aqueous suspensions of cellulose nanocrystals in the presence of electrolyte (KCl) was studied. Their acid-base properties were revealed using potentiometric titration. The influence of electrolyte concentration on dynamic viscosity of the obtained hydrosols and their ability to show birefringence was established.

Keywords: like nanocrystals; microscopy; solvolysis regenerated; prepared solvolysis; regenerated cellulose

Journal Title: Carbohydrate polymers
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.