LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The structural amphiphilicity of cellulose nanocrystals characterized from their cohesion parameters.

Photo by mattreames from unsplash

Cellulose nanocrystals (CNCs), usually considered as isotropically polar nanoparticles, are sheet-like crystalline assemblies of cellulose chains. Here, we link the anisotropy of the CNC structure to an amphiphilic behavior in… Click to show full abstract

Cellulose nanocrystals (CNCs), usually considered as isotropically polar nanoparticles, are sheet-like crystalline assemblies of cellulose chains. Here, we link the anisotropy of the CNC structure to an amphiphilic behavior in suspension. The Hansen solubility parameters (HSP: δD;δP;δH) of wood-based H2SO4-hydrolyzed CNCs were measured from sedimentation tests in a wide set of 59 solvents and binary mixtures. Two sets of cohesion parameters corresponding to a polar surface (18.1; 20.4; 15.3) ± (0.5; 0.5; 0.4) MPa1/2 and to a mildly non-polar one (17.4; 4.8; 6.5) ± (0.3; 0.5; 0.6) MPa1/2 were determined, with respective solubility radii of 7.8 and 2.1 MPa1/2. The polar sphere is thought to correspond to the (110) & (11¯0) surfaces of cellulose Iβ nanocrystals, while the smaller non-polar sphere is coherent with the exposure of (200) surfaces. The HSP graph provides new insights on the amphiphilic nature of CNCs and a mapping of their chemical affinity for solvents and polymer matrices.

Keywords: characterized cohesion; structural amphiphilicity; amphiphilicity cellulose; nanocrystals characterized; cohesion parameters; cellulose nanocrystals

Journal Title: Carbohydrate polymers
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.