LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fabrication of metal-organic frameworks@cellulose aerogels composite materials for removal of heavy metal ions in water.

Photo from wikipedia

In the present work, we develop novel method of loading metal-organic frameworks (UiO-66 and UiO-66-NH2) on the flexible cellulose aerogels as metal-organic frameworks@cellulose aerogels composite materials by using in situ… Click to show full abstract

In the present work, we develop novel method of loading metal-organic frameworks (UiO-66 and UiO-66-NH2) on the flexible cellulose aerogels as metal-organic frameworks@cellulose aerogels composite materials by using in situ growth procedure at room temperature. The as prepared metal-organic frameworks@cellulose aerogels composite materials were well characterized via SEM, XRD, atomic absorption spectrometer, and TG analysis, besides the adsorption of Pb2+ and Cu2+ in metal-organic frameworks@cellulose aerogels composite materials was investigated. The amount of metal ions adsorbed by metal-organic frameworks@cellulose aerogels composite materials is equal to the sum of metal-organic frameworks and cellulose aerogels, indicating that the metal-organic frameworks are not blocked after cellulose aerogels growth and still have adsorption properties. It was found that metal-organic frameworks@cellulose aerogels composite materials can be recycled to adsorb Pb2+ and Cu2+ in water after simple cleaning. The equilibrium adsorption capacity of Pb2+ adsorbed by UiO-66-NH2@CA was 89.40 mg g-1, and can be easily reused for more than 5 cycles without significant decrease in performance. Moreover, the maximum decomposition temperature (Tmax) of UiO-66-NH2@CA was increased by 62.1℃. This result suggested that such metal-organic frameworks@cellulose aerogels composite materials could adsorb heavy metal ions in water could by avoiding secondary pollution and show great potential in water treatment.

Keywords: cellulose aerogels; frameworks cellulose; metal organic; metal; organic frameworks; aerogels composite

Journal Title: Carbohydrate polymers
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.