LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multi-scale assembly of hydrogels formed by highly branched arabinoxylans from Plantago ovata seed mucilage studied by USANS/SANS and rheology.

Photo by qqq_saharok from unsplash

The structures of two hydrogels formed by purified brush-like polysaccharides from Plantago ovata seed mucilage have been characterised from the nanometre to micrometre scale by using a combination of SANS… Click to show full abstract

The structures of two hydrogels formed by purified brush-like polysaccharides from Plantago ovata seed mucilage have been characterised from the nanometre to micrometre scale by using a combination of SANS and USANS techniques. These two hydrogels have distinctly different melting and rheological properties, but the structure of their gel networks bears striking similarity as revealed by USANS/SANS experiments. Surprisingly, we find that the dramatic changes in the rheological properties induced by temperature or change in the solvent quality are accompanied by a small alteration of the network structure as inferred from scattering curves recorded above melting or in a chaotropic solvent (0.7 M KOD). These results suggest that, in contrast to most gel-forming polysaccharides for which gelation depends on a structural transition, the rheological properties of Plantago ovata mucilage gels are dependent on variations in intermolecular hydrogen bonding. By enzymatically cleaving off terminal arabinose residues from the side chains, we have demonstrated that composition of side-chains has a strong effect on intermolecular interactions, which, in turn, has a profound effect on rheological and structural properties of these unique polysaccharides.

Keywords: seed; hydrogels formed; rheology; plantago ovata; mucilage; ovata seed

Journal Title: Carbohydrate polymers
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.