Facile strategy to construct a cellulose nanocomposite hydrogel with self-healing and biocompatible properties is reported by crosslinking dialdehyde cellulose nanocrystals with acylhydrazine-terminated polyethylene glycol via dynamic reversible acylhydrazone for the… Click to show full abstract
Facile strategy to construct a cellulose nanocomposite hydrogel with self-healing and biocompatible properties is reported by crosslinking dialdehyde cellulose nanocrystals with acylhydrazine-terminated polyethylene glycol via dynamic reversible acylhydrazone for the first time. The effects of process variables on gelation time, mechanical strength and self-healing efficiency of hydrogels were investigated. It was found that gelation time shortened from hours to seconds by adjusting gelator and catalyst concentration. Tensile and compressive strength of hydrogel could reach 141 K Pa and 580 K Pa at 20.1% gelator concentration, respectively. Interestingly, the as-prepared hydrogel presented excellent self-healing ability without additional stimuli whose healing efficiency was higher than 90% even at higher gelator concentration. Furthermore, Cytotoxicity test showed that cell viability almost reached 100% after culturing with hydrogel, which revealed the hydrogel was biocompatible.
               
Click one of the above tabs to view related content.