LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Block copolymers containing dextran and deoxycholic acid polyesters. Synthesis, self-assembly and hydrophobic drug encapsulation.

Photo from wikipedia

New biocompatible amphiphilic block copolymers were prepared using two natural compounds as starting materials, a polysaccharide (dextran) and a bile acid (deoxycholic acid). The copolymers were synthesized by dipolar 1,3-cycloaddition… Click to show full abstract

New biocompatible amphiphilic block copolymers were prepared using two natural compounds as starting materials, a polysaccharide (dextran) and a bile acid (deoxycholic acid). The copolymers were synthesized by dipolar 1,3-cycloaddition reaction between dextran with azide end groups and deoxycholic acid - oligo(ethylene glycol)s polyester with propargyl end groups. Different copolymer composition were obtained by variation of molecular weights of dextran (Mn 4.5, 8, 15 kDa) and polyester (Mn 2-6 kDa), as well as the length of oligo(ethylene glycol) (2-4 ethylenglycol units) used for polyester synthesis. These copolymers can for micelle like aggregates in aqueous medium with nanometric size (50-600 nm) and spherical form, as assessed by light scattering, atomic force microscopy and transmission electron microscopy. Encapsulation of the hydrophobic drug curcumin in micelles could increase 68,181 times its water solubility, and curcumin release from micelles was slow and with reduced burst effect.

Keywords: microscopy; block copolymers; encapsulation; hydrophobic drug; deoxycholic acid

Journal Title: Carbohydrate polymers
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.