Cellulose-based biocompatible, tunable and injectable hydrogels embedded with pH-responsive diblock copolymer micelles were constructed to achieve localized drug delivery with prolonged, stimuli-driven and slow-release function. First, we prepared two types… Click to show full abstract
Cellulose-based biocompatible, tunable and injectable hydrogels embedded with pH-responsive diblock copolymer micelles were constructed to achieve localized drug delivery with prolonged, stimuli-driven and slow-release function. First, we prepared two types of modified carboxymethyl cellulose (CMC) including hydrazide-modified carboxymethyl cellulose (CMC-NH2) and oxidized carboxymethyl cellulose (CMC-CHO) with varying degrees of oxidation. Then, pH-responsive poly (ethylene oxide)-block-poly (2-(diisopropylamino) ethyl methacrylate) (PEO-b-PDPA) copolymers as micelle cores to carry hydrophobic substances were also synthesized through atom transfer radical polymerization (ATRP). An injectable hydrogel composite system was finally obtained by mixing CMC-NH2 and CMC-CHO polymer suspensions containing PEO-b-PDPA copolymer micelles through a Schiff base reaction. This newly-synthesized, tunable, cellulose-based double barrier system exhibits a pH-triggered, prolonged, and slow-release profile based on the release test using both Nile Red dye and doxorubicin. The hydrogel system also exhibited comparable storage moduli and tunable degradation properties.
               
Click one of the above tabs to view related content.